

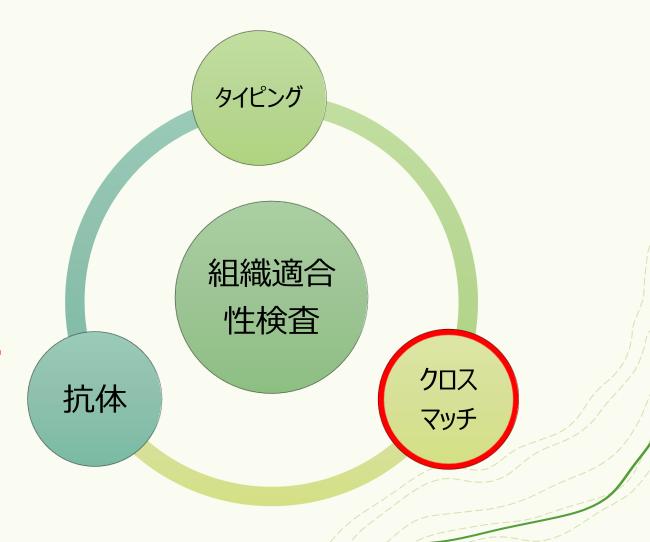
第6回「今後の輸血・細胞治療検査室のあり方を考える」セミナー

臓器移植におけるリンパ球交叉試験

令和6年5月29日(水)

熊本赤十字病院 検査部 吉田雅弥

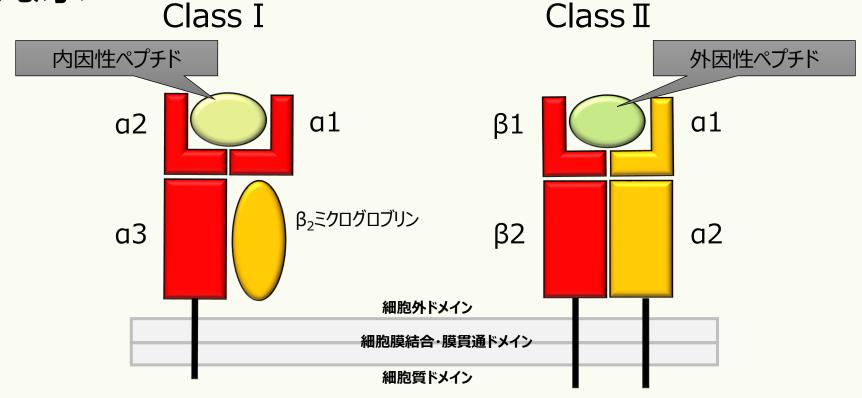
第6回「今後の輸血・細胞治療検査室のあり方を考える」セミナー COI開示


吉田 雅弥

演題発表に関連し、開示すべきCOI関係にある企業などはありません。

組織適合性検査(HLA検査)の種類

- □HLAタイピング
 - ✓PCR-rSSO法が主流
 - ✓他にPCR-SSP,-SSP,NGSなど
- □抗HLA抗体検査
 - ✓スクリーニング
 - ✓特異性同定検査
- □リンパ球交叉試験=クロスマッチ
 - **✓LCT法(CDC法)**
 - **√FCXM**


クロスマッチの目的・意義

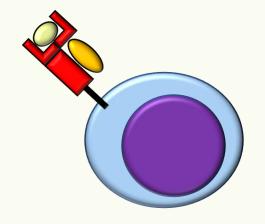
- ■Donor臓器(抗原)とRecipientの血清(抗体)を用いて抗原抗体 反応の有無を確認し、拒絶反応のリスクを調べる
 - ✓臓器を使用することはできないため、**血液中のリンパ球で代用する。**
 - ※供血者の赤血球と患者の血漿(清)を使用するクロスマッチと考え方は同じ

なぜ、リンパ球を使用するのか?

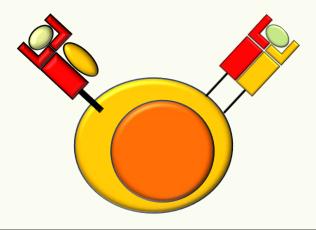
HLA抗原

Class I: 赤血球と角膜を除くほとんどの細胞に発現

※赤血球膜のBg抗原はHLAクラス I 分子が赤血球に発現したものとして知られており、Bga,Bgb,BgcはHLA-B7,-B17,-A28に対応


Class II: 抗原提示細胞(マクロファージ、単球、B細胞など)に発現

リンパ球


末梢血液中のリンパ球の 約75%がTリンパ球、約25%がBリンパ球

Tリンパ球

□Class1のみ発現

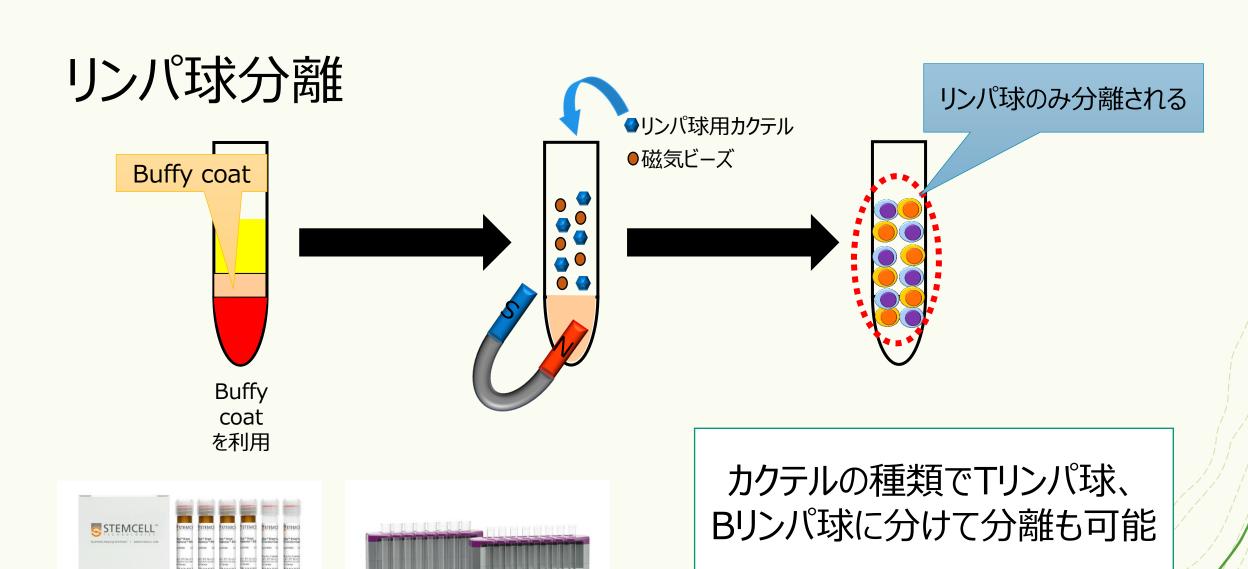
Bリンパ球

□Class1及びClass2を発現

※Class1発現量:Bリンパ球>Tリンパ球

クロスマッチの結果を解釈する上で重要な知識

クロスマッチの種類


□リンパ球細胞傷害試験(lymphocyte cytotoxicity test; LCT)

- ※CDCクロスマッチ(Complement dependent cytotoxicity crossmatch; CDC)とも言われている
 - ✓顕微鏡を用いる(感度低い)
 - ✓判定は検査者の主観、熟練度などの影響を受ける

□FCXM (Flow Cytometry Cross match)

- ✓フローサイトメーターを用いる(感度高い)
- ✓偽陽性もあり、総合的な判定が必要
- □ICFA (Immunocomplex Capture Fluorescence Analysis)

EasySep Direct

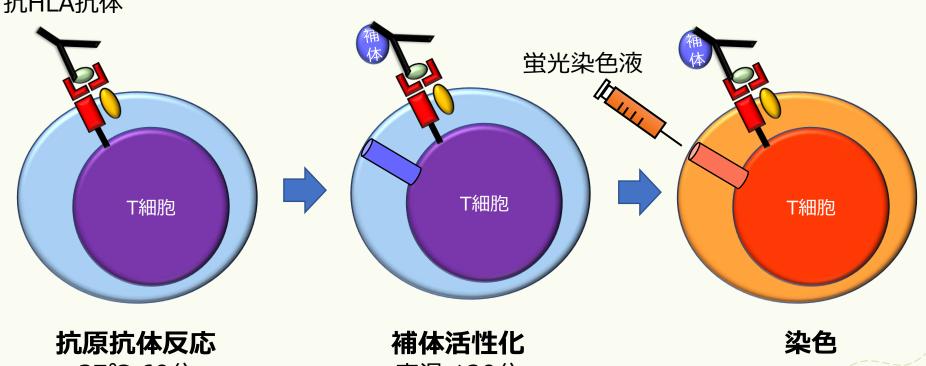
EasySep Direct

□特徴

- ✓処理時間が短い
 - ▶約1時間で終了(従来試薬:1時間20分程度)
- ✓操作ステップが少ない
 - ▶ 遠心分離操作が少なく、試薬添加・静置の繰り返し
- ✓目的細胞(リンパ球)を高純度で回収可能
 - ▶ 常に95%以上の純度で回収可能

□注意点

- ✓回収率を上げようとすると純度が落ちる
- ✓洗浄操作がなく、血漿成分が残る
 - ➤ 分離後にPBSで洗浄操作を加えると解決

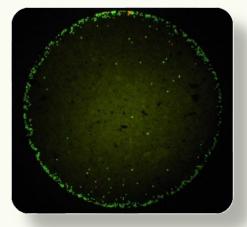

LCT (CDC)

EasySep Direct

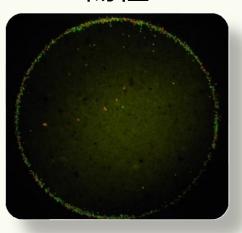
Tリンパ球とBリンパ球に分離して実施

例:TUンパ球

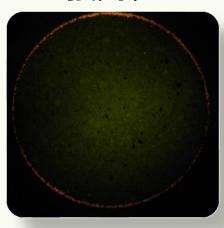
抗HLA抗体


37℃ 60分

室温 120分



LCT (CDC) の判定


陰性

陽性

強陽性

テラサキプレート

検査者の力量に影響される

感度悪いが、**補体結合性抗体**を検出

倒立位相差蛍光顕微鏡

LCT (CDC) の判定

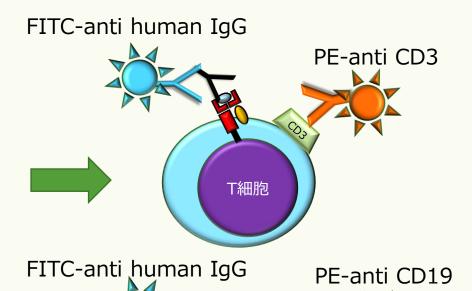
	Score	死細胞率	判定
_	_ 1	0-10%	陰性
	2	11-20%	弱陽性(疑陰性)
陽性	4	21-50%	陽性
	6	51-80%	陽性
	8	81-100%	陽性(強陽性)
	0	判定不能	判定不能

アメリカ組織適合免疫遺伝学会 ASHI Standards for Histocompatibility Testing

- IgMの影響を受けることがある→血清をDTT処理して再検
- 検出感度の問題で低~中等度力価のDSAは検出できない場合がある (MFI≥8,000~10,000ぐらいが陽性になる目安)

FCXM

例:2 color


Tリンパ球

Bリンパ球

感度良いが、<u>非特異反応に</u> よる偽陽性あり

EasySep Direct

2 color

- Tリンパ球
 - ✓ FITC-anti human IgG
 - ✓ PE-anti CD3
- Bリンパ球
 - ✓ FITC-anti human IgG
 - ✓ PE-anti CD19

3 color

- Totalリンパ球
 - ✓ FITC-anti human IgG
 - ✓ PerCP-anti CD3
 - ✓ PE-anti CD19

リツキサン(CD20抗体)の影響を受ける

FCXMの判定

Tリンパ球	Bリンパ球	Class1抗体	Class2抗体	解釈
+	+	0	0	Class I またはClass I + II
_	+	0	0	Class I またはClass II、Class I + II
+	_	\triangle	×	非特異反応の可能性
_	_	×	×	検出感度以下の可能性あり

□判定時の注意点

✓Bリンパ球はClass1及びClass2を発現

※Class1発現量:Bリンパ球>Tリンパ球

- ✓非特異反応の可能性を常に考える
- ✓低力価の抗HLA抗体は検出できない可能性がある(MFI<1,000~1,500)

Bリンパ球の非特異反応

- □非特異反応の原因
 - ✓血清中の免疫グロブリン塊や免疫複合体が、B細胞のFcレセプターに結合することで生じる
- □非特異反応の軽減策
 - ✓プロナーゼ(pronase)処理
 - ※細胞膜に取り込まれた免疫グロブリン, **リンパ 球細胞膜のFcレセプター, CD20** を除去する蛋白分解酵素。

リツキサン(CD20抗体)の影響を軽減できる

クロスマッチの解釈(まとめ)

LCTとFCXM

LCT	FCXM	解釈
+	+	補体結合性の抗HLA抗体高力価の抗HLA抗体
+	_	IgMの抗HLA抗体※DTT処理後に再検査
_	+	• 抗HLA抗体、非特異反応 ※抗HLA抗体以外の影響あり
_	_	陰性※検出感度以下の可能性あり

FCXM

+ + Class I またはClass I + II * Class I またはClass II、	T細胞	B細胞	解釈
Class I またはClass II 、	+	+	Class I またはClass I + II **
Class I + II *	_	+	
+ 非特異反応の可能性	+	_	非特異反応の可能性
- 検出感度以下の可能性あり	_	_	検出感度以下の可能性あり

総合的に判断

- HLAタイピング:4桁で報告(DSAの判断に必要)
- クロスマッチ:LCTとFCXMを総合的に判断(移植可否の判断)
- 抗HLA抗体: DSAの有無、クロスマッチ結果の裏付け(抗体量の把握)

まとめ

- 移植医療は発展途上
- 臓器移植は抗HLA抗体のモニタリングも必要 とされている
- 需要は高まることが予想される
- Epitope Analysis
- 補体結合性の確認
- DSAの有無
- MFIによる抗体量の 大まかな推測
- モニタリング

タイピング

• Alleleレベルのマッチング

Epitope Matching

組織適合 性検査

抗体

クロス マッチ

• 適合性の判断

正しい結果を得るためには検査前の細胞分離が重要

• バーチャルクロスマッチ

ありがとうございました。

