

# SBT RESOLVER

## **Instructions for Use**

PCR Amplification and Sequencing of HLA Class I and II Loci

Version No: 12.0 Issue Date: July 2012





Conexio Genomics Pty Ltd 8/31 Pakenham St Fremantle 6160 Western Australia Australia



Qarad bvba Cipalstraat 3 B-2440 Geel Belgium

## Contents

| PRINCIPLE                                                                                                                                                                                                                                                                                                                                               | 3                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| INTENDED USE                                                                                                                                                                                                                                                                                                                                            | 3                                                  |
| KIT COMPOSITION                                                                                                                                                                                                                                                                                                                                         | 4                                                  |
| STORAGE REQUIREMENTS                                                                                                                                                                                                                                                                                                                                    | 7                                                  |
| MATERIALS, REAGENTS AND EQUIPMENT NOT SUPPLIED                                                                                                                                                                                                                                                                                                          | 7                                                  |
| SAMPLE REQUIREMENTS                                                                                                                                                                                                                                                                                                                                     | 8                                                  |
| WARNINGS AND SAFETY PRECAUTIONS                                                                                                                                                                                                                                                                                                                         | 9                                                  |
| SYMBOLS                                                                                                                                                                                                                                                                                                                                                 | 9                                                  |
| PROCEDURE                                                                                                                                                                                                                                                                                                                                               |                                                    |
| <ol> <li>PCR</li> <li>AGAROSE GEL ELECTROPHORESIS</li> <li>PURIFICATION OF PCR PRODUCT</li> <li>SEQUENCING REACTION</li> <li>SEQUENCING REACTION OF SEQUENCING REACTION PRODUCTS.</li> <li>DENATURATION &amp; ELECTROPHORESIS OF SEQUENCING REACTION PRODUCTS</li> <li>EDITING AND ANALYSIS OF ELECTROPHEROGRAMS</li> </ol> PERFORMANCE CHARACTERISTICS | 10<br>11<br>12<br>13<br>14<br>14<br>14<br>14<br>15 |
| Accuracy<br>Detection Limit                                                                                                                                                                                                                                                                                                                             |                                                    |
| SPECIFICITY                                                                                                                                                                                                                                                                                                                                             | -                                                  |
| LIMITATIONS AND CAUTIONS                                                                                                                                                                                                                                                                                                                                |                                                    |
| LICENSE                                                                                                                                                                                                                                                                                                                                                 | 16                                                 |
| TROUBLESHOOTING                                                                                                                                                                                                                                                                                                                                         | 17                                                 |
| RELATED PRODUCTS                                                                                                                                                                                                                                                                                                                                        |                                                    |
| SUPPORT AND CONTACT DETAILS                                                                                                                                                                                                                                                                                                                             |                                                    |

## Principle

The HLA Sequence Based Typing (SBT) procedure described here, involves the initial amplification of the target sequence followed by treatment with ExoSAP-IT<sup>®</sup> to remove unincorporated primers and dNTPs. The amplicon is then used as a template for direct automated fluorescent DNA sequencing using customized sequencing primers and the Big Dye<sup>®</sup> Terminator sequencing chemistry available from Applied Biosystems<sup>™</sup> by Life Technologies<sup>™</sup>. The extension products are purified according to the ethanol precipitation method and denatured using Hi-Di<sup>™</sup> formamide available from Applied Biosystems<sup>™</sup> by Life Technologies<sup>™</sup>, before separation and detection on an automated fluorescent DNA sequence. It is recommended that the resulting data is then analysed with Assign<sup>™</sup> sequence analysis software from Conexio Genomics Pty Ltd.

## **Intended Use**

The SBT Resolver<sup>TM</sup> kits enable the amplification and sequencing of portions of specific HLA genes for the purpose of assisting the operator in determining the HLA genotype of an individual. Matching HLA types between donors and recipients improves the outcome of solid organ and bone marrow stem cell transplantation. It should be noted that these SBT kits are not used for the diagnosis of disease.

### Kit Composition

| Kit     | Catalogue No   | Σ        | PRE-PCR Contents <sup>†</sup><br>(No of vials) |           | P     | OST-PCR Con<br>(No of vials) |                 |
|---------|----------------|----------|------------------------------------------------|-----------|-------|------------------------------|-----------------|
| Class I |                |          |                                                |           |       |                              |                 |
| HLA-A   | XH-PD1.1-2(20) | 20 tests | DNA POL – HLA-A                                | 1 x 25µL  | AEX1F | AEX1R                        | 1 x 44µL each   |
|         |                |          | HLA-A MIX                                      | 1 x 352µL | AEX2F | AEX2R                        |                 |
|         |                |          |                                                |           | AEX3F | AEX3R                        |                 |
|         |                |          |                                                |           | AEX4F | AEX4R                        |                 |
|         | XH-PD1.1-2(50) | 50 tests | DNA POL – HLA-A                                | 1 x 60µL  | AEX1F | AEX1R                        | 1 x 110 μL each |
|         |                |          | HLA-A MIX                                      | 1 x 880µL | AEX2F | AEX2R                        |                 |
|         |                |          |                                                |           | AEX3F | AEX3R                        |                 |
|         |                |          |                                                |           | AEX4F | AEX4R                        |                 |
| HLA-B   | BS-PD2.1-2(20) | 20 tests | DNA POL – HLA-B                                | 1 x 25μL  | BEX1F | BEX2F                        | 1 x 44µL each   |
|         |                |          | HLA-B MIX                                      | 1 x 352μL | BEX2R | BEX3F                        |                 |
|         |                |          |                                                |           | BEX3R | BEX4F                        |                 |
|         |                |          |                                                |           | BEX4R |                              |                 |
|         | BS-PD2.1-2(50) | 50 tests | DNA POL – HLA-B                                | 1 x 60μL  | BEX1F | BEX2F                        | 1 x 110 μL each |
|         |                |          | HLA-B MIX                                      | 1 x 880µL | BEX2R | BEX3F                        |                 |
|         |                |          |                                                |           | BEX3R | BEX4F                        |                 |
|         |                |          |                                                |           | BEX4R |                              |                 |

| HLA-C    | HH-PD 3.2-2(20)    | 20 tests | DNA POL – HLA-C | 1 x 25µL  | CEX1F    | CEX1R      | 1 x 44µL each  |
|----------|--------------------|----------|-----------------|-----------|----------|------------|----------------|
|          |                    |          | HLA-C MIX       | 1 x 352μL | CEX2F    | CEX2R      | ·              |
|          |                    |          |                 |           | CEX3F    | CEX3R      |                |
|          |                    |          |                 |           | CEX4F    | CEX4R      |                |
|          |                    |          |                 |           | CEX5F    | CEX5R      |                |
|          |                    |          |                 |           | CEX6F    | CEX6R      |                |
|          |                    |          |                 |           | CEX7F    |            |                |
|          | HH-PD 3.2-2(50)    | 50 tests | DNA POL – HLA-C | 1 x 60µL  | CEX1F    | CEX1R      | 1 x 110µL each |
|          | IIII-I D 3.2-2(30) | 50 10515 | HLA-C MIX       | 1 x 880μL | CEX2F    | CEX2R      |                |
|          |                    |          |                 | 1 X 880µL |          |            |                |
|          |                    |          |                 |           | CEX3F    | CEX3R      |                |
|          |                    |          |                 |           | CEX4F    | CEX4R      |                |
|          |                    |          |                 |           | CEX5F    | CEX5R      |                |
|          |                    |          |                 |           | CEX6F    | CEX6R      |                |
|          |                    |          |                 |           | CEX7F    |            |                |
| Class II |                    |          |                 |           |          |            |                |
|          |                    |          |                 |           |          | <u> </u>   |                |
| HLA-DRB1 | HH-PD5.2-4(20)     | 20 tests | DNA POL – DRB1  | 1 x 10µL  | DRB1EX2F | DRB1EX2R   | 1 x 44µL each  |
|          |                    |          | HLA-DRB1 MIX    | 1 x 370µL | DRB1EX3R | RB-TG344-R |                |
|          |                    | 50       |                 |           | DRB1EX2F | DRB1EX2R   |                |
|          | HH-PD5.2-4(50)     | 50 tests | DNA POL – DRB1  | 1 x 20µL  |          |            | 1 x 110µL each |
|          |                    |          | HLA-DRB1 MIX    | 1 x 920µL | DRB1EX3R | RB-TG344-R |                |
|          |                    |          |                 |           |          |            |                |

| HLA-DQB1                   | PQ-PD6.2-2(20)             | 20 tests           | DNA POL – DQB1        | 1 x 10µL               | DQB1EX2F         | DQB1EX2R        | 1 x 44µL each        |
|----------------------------|----------------------------|--------------------|-----------------------|------------------------|------------------|-----------------|----------------------|
|                            |                            |                    | HLA-DQB1 MIX          | 1 x 370µL              | DQB1EX3F         | DQB1EX3R        |                      |
|                            | PQ-PD6.2-2(50)             | 50 tests           | DNA POL – DQB1        | 1 x 20µL               | DQB1EX2F         | DQB1EX2R        | 1 x 110µL each       |
|                            |                            |                    | HLA-DQB1 MIX          | 1 x 920µL              | DQB1EX3F         | DQB1EX3R        |                      |
| HLA-DPB1                   | HH-PD10.1(20)              | 20 tests           | DNA POL – DPB1        | 1 x 10µL               | DPB1EX2F         | DPB1EX2R        | 1 x 44uL each        |
|                            |                            |                    | HLA-DPB1 MIX          | 1 x 370µL              | I                |                 |                      |
|                            | HH-PD10.1(50)              | 50 tests           | DNA POL – DPB1        | 1 x 20µL               | DPB1EX2F         | DPB1EX2R        | 1 x 110uL each       |
|                            |                            |                    | HLA-DPB1 MIX          | 1 x 920µL              |                  |                 |                      |
| <sup>†</sup> The PRE-PCR k | it contains a vial of a lo | <br>cus-specific F | CR mix (e.g. HLA-A MI | $\mathbf{x}$ ) consist | ing of PCR buffe | er, dNTPs, MgCl | , and locus specific |

<sup>†</sup>The PRE-PCR kit contains a vial of a locus-specific PCR mix (e.g. **HLA-A MIX**) consisting of PCR buffer, dNTPs, MgCl<sub>2</sub>, and locus specific PCR primers, along with a single vial of DNA polymerase (e.g. **DNA POL – HLA-A**).

).

The POST-PCR kit contains sequencing primers (e.g. **AEX1F** 

## **Storage Requirements**

The PRE- and POST-PCR boxes may be separated and stored in designated PRE- and POST-PCR freezers. When stored at -20°C (temperature range of -15°C to -25°C is acceptable), the kit components can be used until the expiry indicated on the outer kit containers and can tolerate up to 25 freeze-thaw cycles.

Accelerated stability testing for the HLA-A, -B, -C, –DRB1, -DQB1 and –DPB1 kits indicated a shelf life of two years when stored at -20°C. While confirmatory real-time testing is underway it is strongly recommended that these kits are NOT to be used beyond their expiry date.

To maintain optimal kit performance, the kit components should be removed from the -20°C storage location and thawed rapidly at room temperature before use. The kit components, with the exception of the polymerase, should then be gently vortexed to ensure that the components of each tube are appropriately mixed after thawing. After use, the kits/components should be returned immediately to -20°C.

## Materials, Reagents and Equipment Not Supplied

#### PCR

- 1. Sterile water
- 2. Electronic or mechanical pipettes and aerosol-resistant tips
- 3. Thermal cycler with heated lid These kits have been validated using the following thermal cyclers:

MJ Research PTC 225 DNA Engine DYAD<sup>™</sup>, Applied Biosystems<sup>™</sup> by Life Technologies<sup>™</sup> Gene Amp<sup>®</sup> PCR System 9700, and Eppendorf Mastercycler<sup>®</sup> Pro.

#### Use of other thermal cyclers with these kits requires validation by the user.

- 4. 0.2mL thin-walled thermal cycling reaction tubes (8 well strips or 96 well plates). Use those recommended for use with your thermal cycler.
- 5. Sterile 1.5mL tubes
- 6. Sterile work area such as biological safety cabinet or hood.
- 7. Table top centrifuge with plate adapters and capacity to reach 2500 x g
- 8. Vortex

#### **Agarose Gel Electrophoresis**

- 9. Agarose gel electrophoresis apparatus
- 10. 1% agarose (molecular biology grade) TBE gel containing  $0.1\mu$ g/mL ethidium bromide.
- 11. Loading buffer
- 12. PCR Marker suitable to cover range of 300 1300 bp
- 13. UV transilluminator

#### **Purification of PCR Product**

14. ExoSAP-IT<sup>®</sup> (USB<sup>®</sup> Products Cat No 78200 for 100 reactions)

- 15. 2mM MgCl<sub>2</sub> (Available for purchase from Conexio Genomics, product code MgCl2-1.0(50) or MgCl2-1.0(3000))
- 16. Shaker

The use of alternative PCR purification techniques requires validation by the user prior to use.

#### **Sequencing Reaction**

- 17. BigDye® Terminator Cycle Sequencing Kit v3.1 or v1.1, Applied Biosystems<sup>™</sup> by Life Technologies<sup>™</sup>.
- 5x Sequencing Reaction Buffer (Conexio Genomics, product code SEQ BUF-2.0(400) or SEQ BUF-2.0(5000)) or BigDye® Terminator v3.1 or v1.1 5X Sequencing Buffer, Applied Biosystems<sup>™</sup> by Life Technologies<sup>™</sup>.

#### **Purification of Sequencing Reaction Products**

- 19. 125mM EDTA, pH8.0 (Available for purchase from Conexio Genomics, product code EDTA-3.0(200) or EDTA-3.0(5000))
- 20. Absolute and 80% Ethanol. Each run requires freshly prepared 80% ethanol consisting of absolute ethanol and sterile water. DO NOT USE DENATURED ETHANOL.

The use of alternative sequencing purification techniques requires validation by the user prior to use.

#### **Denaturation and Electrophoresis of Sequencing Reaction Products**

- 21. Hi-Di<sup>™</sup> Formamide, Applied Biosystems<sup>™</sup> by Life Technologies<sup>™</sup>, product code 4311320
- 22. Automated DNA Sequencer and accessories (eg Applied Biosystems<sup>™</sup> by Life Technologies<sup>™</sup> ABI Prism<sup>®</sup> 3730), including data collection and software.

These kits have been tested and validated on the Applied Biosystems<sup>™</sup> by Life Technologies<sup>™</sup> 3100, 3730 and 3730xl capillary sequencers and software.

## The use of other denaturation techniques and sequencing platforms requires validation by the user prior to use.

23. HLA Sequencing Analysis Software (e.g. Assign<sup>TM</sup> SBT, version 3.5 or higher or Assign<sup>TM</sup> ATF, Conexio Genomics Pty Ltd).

## Sample Requirements

- 1. Sterile water (negative/ no template control)
- 2. High molecular weight human genomic DNA (concentration range of 20-100ng/ $\mu$ L in Tris/EDTA buffer and OD<sub>260/280</sub>> 1.8) extracted from ACD or EDTA anticoagulated whole blood specimens. Do NOT use whole blood specimens containing heparin.

## Warnings and Safety Precautions

- This kit must be used by trained and authorized laboratory personnel.
- All samples, equipment and reagents must be handled in accordance with good laboratory practice. In particular, all patient material should be considered as potentially infectious. The use of gloves and laboratory coats is strongly recommended. Handle and dispose of all sample material according to local and national regulatory guidelines.
- There are NO dangerous substances contained in any of the kit components.
- Do NOT use reagents beyond their expiration date.
- The use of kit components from different kit batches is NOT recommended. Such use may affect the assay's performance.
- Use of reagents not included in this kit or not listed under "Materials, Reagents and Equipment Not Supplied" (e.g. alternative *Taq* DNA polymerases) is NOT recommended. Such use may affect the performance of the assay.
- Care should be taken to prevent cross-contamination of DNA specimens. Change tips between DNA specimens wherever possible.
- Pre- and Post-PCR activities must be strictly physically separated. Use specifically designated equipment, reagents and laboratory coats.
- Ethidium bromide is a potential carcinogen. Protective gloves must always be used when preparing and handling gels. Dispose of ethidium-bromide gels and buffers according to local and national guidelines.
- While viewing and photographing agarose gels under UV light, always avoid direct exposure and use appropriate UV-blocking face protection, disposable gloves and laboratory coats.

## **Symbols**

The following non-standard symbols have been used:

| Symbol         | Description                                                                                                  |
|----------------|--------------------------------------------------------------------------------------------------------------|
| HLA-X MIX      | Locus specific PCR Mix                                                                                       |
| DNA POL – XXXX | DNA polymerase                                                                                               |
| AEX1F          | HLA-A exon 1 forward sequencing primer. Refer to "Kit Composition" and Table 4 for other sequencing primers. |
|                | Date of manufacture (required for non-EU markets).                                                           |

## Procedure

#### 1. PCR

- 1.1. A separate PCR reaction will need to be set up for each locus to be amplified, and for each individual sample to be tested. Each run should include appropriate positive control/s of known genotype, and at least one negative control for each locus being amplified.
- 1.2. Prepare a fresh solution of PCR master mix each time a PCR is performed. Quickly thaw the locus-specific PCR mix at room temperature. Once thawed, vortex briefly.
- 1.3. Dispense the required volume of PCR mix and DNA polymerase into a sterile tube for the number of samples to be tested (refer to Table 1 below for the volume per reaction). Pulse vortex the solution 3-4 times.

| Locus                  | Α    | В    | С    | DRB1   | DQB1   | DPB1   |
|------------------------|------|------|------|--------|--------|--------|
| Locus-specific PCR Mix | 16µL | 16µL | 16µL | 16.7µL | 16.7µL | 16.7µL |
| e.g. HLA-A MIX         |      |      |      |        |        |        |
| DNA Polymerase         | 1µL  | 1µL  | 1µL  | 0.3µL  | 0.3µL  | 0.3µL  |
| e.g. DNA POL – HLA-A   |      |      |      |        |        |        |
|                        |      |      |      |        | -      | -      |

#### Table 1: Composition of the master mix required per sample.

- 1.4. Dispense  $17\mu L$  of the master mix into each reaction well.
- 1.5. Add  $3\mu$ L of sample DNA or appropriate positive control/s to each reaction well. Add  $3\mu$ L of sterile water to the negative control reaction well.
- 1.6. Seal the reaction wells. Mix gently by vortexing and centrifuge briefly.
- 1.7. Place the reaction wells into a thermal cycler and run according to the thermal cycling conditions below.

```
95°C - 10 mins

96°C - 20 secs

60°C - 30 secs

72°C - 3 mins

15°C - hold

33 \text{ cycles}
```

- 1.8. Amplification takes approximately 2.5 hours to complete.
- 1.9. When the PCR is completed, remove the reaction wells/plate from the thermal cycler and either proceed directly to gel electrophoresis or store at 4°C until required.

**NOTE:** Purification of amplicons by ExoSap-IT<sup>®</sup> treatment should occur within 24 hours of completion of PCR.

#### 2. Agarose Gel Electrophoresis

2.1. Confirm successful amplification by agarose gel electrophoresis using  $2\mu$ L of each PCR product combined with  $5\mu$ L loading buffer (alternative volumes of loading

buffer should be validated prior to use). The use of 1% agarose gels is recommended.

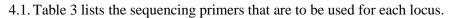
2.2. The number and expected sizes of the resultant amplicons will vary according to the locus and sample genotype. Expected PCR amplicon sizes are indicated in Table 2.

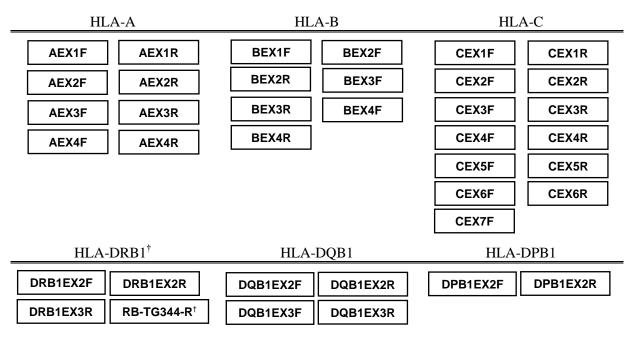
| Locus    | Expected band sizes                                                                                       |
|----------|-----------------------------------------------------------------------------------------------------------|
| HLA-A    | $\approx 2 \text{ kbp}$                                                                                   |
| HLA-B    | $\approx 2 \text{ kbp}$                                                                                   |
| HLA-C    | $\approx$ 1 kbp and 1.4 kbp                                                                               |
| HLA-DRB1 | ≈ 450 bp - 650bp<br>(Banding pattern will vary<br>depending on the presence of<br>specific allele groups) |
| HLA-DQB1 | $\approx$ 300 bp and 350bp                                                                                |
| HLA-DPB1 | ≈ 400 bp                                                                                                  |

Table 2: Expected product sizes for each assay.

#### **3.** Purification of PCR Product

**NOTE:** Purification systems other than EXOSAP-IT<sup>®</sup> (e.g. Agencourt<sup>®</sup> AMPure<sup>®</sup> XP or column-based systems) can be used to purify these PCR products. It is strongly recommended that users validate these procedures before proceeding. If EXOSAP-IT<sup>®</sup> is to be used it is recommended that users follow the procedure described below.


- 3.1. Prepare a mastermix consisting of  $4\mu$ L of ExoSAP-IT<sup>®</sup> and  $8\mu$ L of 2mM MgCl<sub>2</sub> per sample to be purified. Dispense  $12\mu$ L of the mastermix into the reaction well of each reactive sample. Seal the wells, vortex and then either place on a shaker or gently vortex for 2 minutes. Centrifuge briefly before placing into the thermal cycler. Run the thermal cycler according to the following profile:
  - 37°C 30mins 80°C - 15mins 4°C - hold
- 3.2. Upon completion, dilute the purified product 1:4 with sterile water. This dilution step will ensure that there is sufficient template to perform the sequencing reactions and ensure that the concentration of the template is sufficient to produce good quality sequence data.


**NOTE:** A higher dilution factor (e.g. 1:8) may be required if consistently high signals and associated noise and artefacts are observed. Weaker PCR products may require a lower dilution factor.

3.3. ExoSAP-IT<sup>®</sup> treated samples may be stored at 4°C until ready for use. ExoSAP-IT<sup>®</sup> treated samples can be stored at 4°C for up to a week before use, but should be stored at -20°C for long term storage.

#### 4. Sequencing Reaction

**NOTE:** In instances where heterozygous ambiguities are to be resolved with hemizygous sequencing primers such as HARPS<sup>®</sup>, please refer to the SBT Resolver<sup>TM</sup> HARPS<sup>®</sup> Instructions for Use.





#### Table 3: Sequencing primers provided for use for each locus.

<sup>†</sup>**RB-TG344-R** is a HARP<sup>®</sup> directed to the codon 86 dimorphism. Its use is optional.

4.2. Prepare a fresh solution of sequencing primer mix on ice each time a sequence reaction is performed. The composition and volumes for the mix indicated below are **per sample.** 

| Component                       | Volume  |
|---------------------------------|---------|
| Sequencing primer               | 2 μL    |
| Sterile water                   | 11.5 μL |
| BigDye <sup>®</sup> Terminators | 1 μL    |
| 5x Seq Rxn Buffer               | 3.5 µL  |

4.3. Mix each sequencing reaction mixture gently by pulse vortexing.

4.4. Dispense 18µL of the sequencing reaction mix into each appropriate reaction well.

**NOTE:** For runs which involve few samples with many sequencing primers, it is acceptable to dispense the sequencing primer  $(2\mu L)$  directly into the individual reaction wells. A master mix may then be created composing of sterile water, BigDye<sup>®</sup> Terminators and 5x Seq Rxn Buffer, of which 16uL is to be dispensed into each reaction well. It is strongly recommended that use of this alternative procedure is validated by the user prior to implementation.

4.5. Add 2µL of purified PCR product to each appropriate well.

**NOTE:** Care must be taken to prevent cross-contamination of sequence reactions.

- 4.6. Seal the reaction wells, mix gently and centrifuge briefly to ensure that the contents are located at the base of each reaction well.
- 4.7. Place the reaction wells into a thermal cycler and run according to the following profile:

| Number of cycles | Temperature and time                       |
|------------------|--------------------------------------------|
| 25               | 96°C – 10sec<br>50°C – 5sec<br>60°C – 2min |
| 1                | $4^{\circ}$ C - hold                       |

4.8. Once the program is complete, remove the reaction wells/plate from the thermal cycler and either proceed directly to purification of the reaction products or store in the dark at 4°C until required. It is recommended that samples are purified and run on the DNA sequencer within 24 hours.

#### 5. Purification of Sequencing Reaction Products

**NOTE**: Purification of the reaction products may be carried out by procedures other than the ethanol precipitation method described here. It is strongly recommended that users validate these procedures before proceeding.

- 5.1. Briefly centrifuge the reaction wells/plates before proceeding. If reusable lids/caps have been used during thermal cycling, label the lids/caps to avoid cross-contamination.
- 5.2. Carefully remove the seals.
- 5.3. To each reaction well add  $5\mu$ L of 125mM EDTA, pH8.0. Ensure that the EDTA reaches the base of the reaction well.
- 5.4. Add 60  $\mu$ L of 100% ethanol to each reaction well. Seal the wells/plate and vortex briefly but thoroughly to ensure thorough mixing.
- 5.5. Pellet the extension products by centrifuging at 2000g for 45 minutes. **IMMEDIATELY PROCEED TO THE NEXT STEP.** If this is not possible, recentrifuge for an additional 10 minutes before proceeding.
- 5.6. Remove the seals to the reaction wells and discard the supernatant by inverting the reaction wells onto paper towel or tissues.
- 5.7. Place the inverted reaction wells and paper towel or tissue into the centrifuge. Centrifuge at 350g for 1 minute to remove any residual supernatant.
- 5.8. Remove the reaction wells from the centrifuge and place in an upright position on the work bench. Discard the paper towel or tissues.
- 5.9. Prepare fresh solution of 80% ethanol with absolute ethanol and sterile water.
- 5.10. Add  $60\mu$ L of 80% ethanol to each well. Reseal the wells and vortex briefly.
- 5.11. Spin at 2000g for 5 minutes.
- 5.12. Repeat steps 5.6 and 5.7.

5.13. Remove the reaction wells from the centrifuge and discard the paper towel. Reseal the reaction wells and proceed to the denaturation step. Otherwise store at -20°C in the dark. It is recommended that the extension products are run on the DNA sequencer within 24 hours of setting up the sequencing reactions.

#### 6. Denaturation & Electrophoresis of Sequencing Reaction Products

**NOTE**: The procedure for the denaturation of extension products in Hi-Di<sup>TM</sup> Formamide described here may not be necessary if purification procedures other than the ethanol precipitation have been used. It is strongly recommended that users validate alternative procedures before proceeding.

- 6.1. Add 12µL of Hi-Di<sup>™</sup> Formamide to each reaction well. Vortex and centrifuge the wells/plate briefly.
- 6.2. Incubate the reaction wells at 98°C for 5 minutes. Following incubation, ensure that the reaction wells are cooled quickly to room temperature (e.g. place on ice or use the thermal cycler to perform the denaturation and cooling steps) before being placed on the sequencer. If it is not possible to run the plates immediately, store at 4°C until required.

**NOTE:** Ensure that there are no air bubbles in the reaction wells. These can enter and damage the capillary.

- 6.3. Load the reaction wells/plate onto the automated sequencer and prepare the data collection file according to the sequencer manufacturer specifications.
- 6.4. The following instrument parameters have been validated by the manufacturer using Big Dye<sup>®</sup> Terminator Sequencing Kit v3.1 and POP-7<sup>TM</sup>. These parameters may require user validation for other polymers, sequencing chemistries and instruments. Please refer to the appropriate instrument user's manual for detailed instructions and guidance (e.g. ensure that the dye set setting is appropriate for the chemistry used, for example v1.1 Big Dye<sup>®</sup> Terminator sequencing chemistry will require a different dye set).

| Parameter      | Setting                |
|----------------|------------------------|
| Dye set        | Z_BigDyeV3             |
| Mobility file  | KB_3730_POP7_BDTV3     |
| Basecaller     | KB.bcp                 |
| Run Module     | Regular FastSeq50_POP7 |
| Injection time | 15 sec                 |
| Run time       | 3000 sec               |

6.5. Use the instrument's data collection software to process the raw collected data and create the sequence files. Please refer to the appropriate instrument user's manual for detailed instructions and guidance.

#### 7. Editing and analysis of electropherograms

The SBT Resolver<sup>™</sup> kits were developed and validated using the Assign<sup>™</sup> SBT and Assign<sup>™</sup> ATF software developed by Conexio Genomics Pty Ltd. For more details please refer to the Conexio Genomics website (<u>http://www.conexio-genomics.com</u>).

## **Performance Characteristics**

#### Accuracy

Panels of up to 81 samples from the UCLA International DNA Exchange proficiency testing program (2008 - 2010) used for internal testing for the SBT Resolver<sup>TM</sup> kits yielded the following results:

| Locus    | Number<br>of samples<br>tested | Number of<br>mistyped<br>samples | Number of<br>heterozygous<br>samples | Number of<br>unique<br>alleles |
|----------|--------------------------------|----------------------------------|--------------------------------------|--------------------------------|
| HLA-A    | 81                             | 0                                | 74                                   | 20                             |
| HLA-B    | 81                             | 0                                | 79                                   | 81                             |
| HLA-C    | 39                             | 0                                | 35                                   | 21                             |
| HLA-DRB1 | 60                             | 0                                | 57                                   | 34                             |
| HLA-DQB1 | 42                             | 0                                | 36                                   | 14                             |
| HLA-DPB1 | 77                             | 0                                | 60                                   | 18                             |

Sequence analysis of PCR and sequencing primer sites and performance evaluation has not identified any alleles that are not amplified through the recommended use of these kits. For further information refer to the SBT Resolver<sup>™</sup> Primer Analysis document available with the Assign<sup>™</sup> SBT references, downloadable from the Conexio Genomics website (http://www.conexio-genomics.com).

#### **Detection Limit**

The recommended concentration of high molecular weight of human genomic DNA is 20-100ng/ $\mu$ L. Internal testing has shown that samples with concentrations as low as 5ng/ $\mu$ L can also be used. Correct genotypes were also obtained from buccal and sheared DNA.

#### Specificity

Conexio Genomics Pty Ltd's SBT Resolver<sup>TM</sup> kits are locus specific assays. Use of the kits according to these instructions should only amplify a single locus. In most instances the use of the sequencing primers incorporated in each kit will produce a HLA typing for most samples without the need for further resolution. In those instances where heterozygous ambiguities remain, the use of resolving sequencing primers (such as SBT Resolver<sup>TM</sup> HARPS<sup>®</sup>) is recommended.

It should be noted that mutations at amplification or sequencing primer sites are possible and may result in allele drop-out. Samples that suggest a homozygous typing result must be confirmed by alternative procedures.

## **Limitations and Cautions**

• It is strongly recommended that these kits are validated by the user prior to implementation in the laboratory using samples whose HLA type has been determined by other molecular based procedures. In particular, any deviations from this procedure (e.g.

the use of alternative PCR or DNA sequencing purification procedures) must be validated by the user prior to implementation.

- These kits have been validated using panels of samples whose genotypes cover a broad range of alleles. However it should be noted that rare alleles and alleles with polymorphisms in amplification and sequencing primer sites may be encountered and these may not be amplified or sequenced.
- The nature of HLA sequence based typing is such that factors other than the PCR mix may result in preferential amplification or allele drop out. As a consequence, apparent homozygous typing results should be confirmed using alternative methods and/or family genotyping.
- A positive control (human DNA) and negative control (sterile water) must be included on every PCR run. The positive control must produce a PCR product of the appropriate size depending on the locus amplified and the resultant sequence must be in concordance with the sample's genotype. There must be no PCR products in the negative template control for each experiment. If a band is evident contamination may have occurred at some level and the run must be repeated.
- Occasionally there may be additional, fainter PCR products evident. These additional bands do not interfere with sequence results or quality.

## License

The SBT Resolver<sup>TM</sup> kits contain GoTaq<sup>®</sup> Hot Start Polymerase (DNA POL) which is manufactured by Promega Corporation for distribution by Conexio Genomics Pty Ltd. Licensed to Promega under U.S. Patent Nos. 5,338,671 and 5,587,287 and their corresponding foreign patents.

## Troubleshooting

| Problem                | Possible cause(s)                                                                                                    | Solution                                                                                                                                                                                                                                                                                                                    |
|------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No or weak PCR product | Poor quality DNA                                                                                                     | Assess DNA quality by gel<br>electrophoresis. Intact DNA<br>should be approx 3kb with<br>little or no evidence of<br>smearing on gel. Re-extract<br>DNA and repeat PCR where<br>possible.                                                                                                                                   |
|                        | Insufficient quantity of DNA added to PCR.                                                                           | Check concentration of DNA<br>is between 20-100ng/µL. Re-<br>extract DNA and repeat PCR<br>where possible.                                                                                                                                                                                                                  |
|                        | Presence of PCR inhibitors in genomic DNA                                                                            | Avoid the use of whole blood<br>specimens containing heparin.<br>Re-extract DNA and repeat<br>PCR where possible.                                                                                                                                                                                                           |
|                        | DNA polymerase not added to<br>the mastermix or insufficient<br>mixing of mastermix prior to<br>addition to samples. | Repeat PCR. Ensure<br>mastermix components are<br>added and mixed sufficiently<br>by vortexing.                                                                                                                                                                                                                             |
|                        | Thermal cycling problems                                                                                             | Check the thermal cycling run<br>parameters.<br>Check the run history to ensure<br>that the run was not terminated<br>prematurely.<br>Ensure that the thermal cycler<br>is operating according to<br>manufacturer's specifications<br>and is regularly maintained.                                                          |
|                        | No ethidium bromide added to the gel.                                                                                | Submerge the gel in a staining<br>bath containing 1X TBE with<br>0.5mg/mL ethidium bromide.<br>Destain in 1X TBE before<br>taking gel image.<br>Ensure ethidium bromide is<br>added to gel prior to pouring.                                                                                                                |
| Incorrect band sizes   | Incorrect kit used                                                                                                   | Check that the appropriate kit is used.                                                                                                                                                                                                                                                                                     |
|                        | Incorrect thermal cycling<br>program used.<br>PCR contamination                                                      | Check the thermal cycle<br>parameters.<br>Check the negative control for<br>evidence of contamination.<br>Decontaminate work area and<br>repeat PCR.<br>Repeat PCR to identify source<br>of contamination. Consider<br>using a fresh kit.<br>If the genomic DNA of a<br>sample appears to be<br>contaminated, re-extract or |

|                                                                                        |                                                         | obtain an alternative source of DNA.                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weak signal intensity of electropherograms                                             | Weak PCR product                                        | Check gel image. Sequencing<br>weak PCR bands is NOT<br>recommended as the sequence<br>quality may be insufficient for<br>SBT.<br>Consider using a lower<br>dilution factor (eg 1:2, 1:3)<br>after PCR purification. |
|                                                                                        | Insufficient reaction products applied to sequencer     | Check sequencer parameters.<br>Injection time and voltage may<br>need to be increased.                                                                                                                               |
|                                                                                        | Problems during purification of sequencer products      | Use extreme care when discarding the supernatant as it may dislodge the pellet.                                                                                                                                      |
| Signal intensity is too<br>high (Presence of high<br>fluorescent peaks –<br>artefacts) | Too much PCR product                                    | Check the gel image. Consider<br>using a higher dilution factor<br>following PCR purification.<br>Check the amount of DNA<br>polymerase used in the PCR.                                                             |
|                                                                                        | Too much reaction products applied to sequencer.        | Check instrument parameters.<br>Consider reducing the<br>injection time and voltage.                                                                                                                                 |
| Noisy baseline (high background)                                                       | Contaminated PCR product                                | Refer to corrective actions listed above.                                                                                                                                                                            |
|                                                                                        | Amplification of closely related<br>HLA genes           | Check thermal cycling<br>parameters. Consider adjusting<br>the parameters if an alternative<br>thermal cycler is used.                                                                                               |
|                                                                                        | Poor PCR purification                                   | Ensure ExoSAP-IT <sup>®</sup> treatment<br>is undertaken according to<br>kit's user instructions.<br>Ensure that the PCR mixture is<br>mixed thoroughly with<br>ExoSAP-IT <sup>®</sup> .                             |
|                                                                                        | Contaminated sequencing reactions                       | Ensure that all steps are taken<br>to prevent cross<br>contamination. Change pipette<br>tips wherever possible. Add<br>liquids at the top of the<br>reaction wells. Prevent<br>aerosols.                             |
|                                                                                        | Contaminated sequencing primer                          | Check sequence quality of the<br>other sequencing primers and<br>other samples using the same<br>primer.                                                                                                             |
|                                                                                        | Contaminated dye terminator<br>mix or sequencing buffer | Repeat sequencing with fresh aliquot of reagents.                                                                                                                                                                    |
|                                                                                        | Poor purification of sequencing products.               | Repeat sequencing and ensure<br>that purification is undertaken<br>according to manufacturer's<br>instructions.                                                                                                      |

| Presence of Dye blobs | Poor purification of sequencing | Purify products according to   |
|-----------------------|---------------------------------|--------------------------------|
|                       | products                        | kit instructions.              |
|                       |                                 | Ensure products are washed     |
|                       |                                 | sufficiently with 80% ethanol. |

## **Related Products**

ASSIGN SBT 3.8+ Product code: CGX0036+

#### SBT RESOLVER HARPS Product codes:

| Product codes: |                 |                 |                 |                 |
|----------------|-----------------|-----------------|-----------------|-----------------|
| C1-TT98-F(20)  | C1-AC98-F(20)   | C1-TC98-F(20)   | C1-TA98-F(20)   | C1-CA102-F(20)  |
| C1-CT102-F(20) | C1-CC102-F(20)  | C1-AG203-F(20)  | C1-GT240-F(20)  | C1-TT368-F(20)  |
| C1-GG307-R(20) | C1-GG363-AF(20) | C1-TA363-F(20)  | C1-AT362-F(20)  | C1-AC497-F(20)  |
| C1-TA368-F(20) | C1-GT355-R(20)  | C1-GG362-R(20)  | C1-CT423-F(20)  | C1-CG570-R(20)  |
| C1-BTA-F(20)   | C1-BCG-F(20)    | C1-CC144-F(20)  | C1-AC206-F(20)  | C1-GC209-F(20)  |
| C1-GA206-F(20) | C1-CG319-F(20)  | C1-CA309-R(20)  | C1-GAT309-R(20) | C1-GAA309-R(20) |
| C1-AG360-F(20) | C1-GC363-F(20)  | C1-GG363-BF(20) | C1-TA420-F(20)  | C1-AC362-F(20)  |
| C1-CC486-F(20) | C1-CT559-R(20)  | C1-GA559-R(20)  | C1-AC559-R(20)  | C1-GG572-R(20)  |
| C1-CG572-R(20) | C1-GAG601-R(20) |                 |                 |                 |
| C1-CT97-F(20)  | C1-CT112-F(20)  | C1-CG134-F(20)  | C1-AG270-F(20)  | C1-AC302-R(20)  |
| C1-GC302-R(20) | C1-CG343-F(20)  | C1-CA343-F(20)  | C1-GA361-F(20)  | C1-TG539-R(20)  |
| C1-GG539-R(20) | C1-AA601-R(20)  |                 |                 |                 |
| RB-01-F(20)    | RB-04-F(20)     | RB-09-F(20)     | RB-15-F(20)     | RB-52-F(20)     |
| RB-GG125-F(20) | RB-AA197-F(20)  | RB-TT197-F(20)  | RB-GT196-F(20)  | RB-GA196-F(20)  |
| RB-TA164-F(20) | RB-TT227-F(20)  | RB-AT258-F(20)  | RB-GC258-F(20)  | RB-CT257-R(20)  |
| RB-AT257-R(20) | RB-TT321-R(20)  | RB-GT344-R(20)  | RB-TG344-R(20)  |                 |
| QB-TA173-F(20) | QB-CT173-F(20)  | QB-TA185-F(20)  | QB-CG353-R(20)  | QB-GG353-R(20)  |
| PB-AT251-R(20) | PB-GT313-R(20)  | PB-TAC121-F(20) | PB-GG341-R(20)  | PB-GC194-F(20)  |
| PB-AG341-R(20) |                 |                 |                 |                 |
|                |                 |                 |                 |                 |

## SBT RESOLVER"

| AN-PD11.0-0(20)<br>AN-PD11.0-0(50) | SBT Resolver <sup>™</sup> HLA-DRB3 kit (20 and 50 tests) |
|------------------------------------|----------------------------------------------------------|
| AN-PD12.0-0(20)<br>AN-PD12.0-0(50) | SBT Resolver <sup>™</sup> HLA-DRB4 kit (20 and 50 tests) |
| AN-PD13.0-0(20)<br>AN-PD13.0-0(50) | SBT Resolver <sup>™</sup> HLA-DRB5 kit (20 and 50 tests) |
| LC-PD2.9(20)<br>LC-PD2.9(50)       | SBT Resolver <sup>™</sup> HLA-B57 kit (20 and 50 tests)  |

#### **General Purpose Laboratory Reagents**

 $\begin{array}{ll} MgCl2 - 1.0(50) & 2mM \ MgCl_2 \\ MgCl2 - 1.0(3000)) & \\ SEQ \ BUF - 2.0(400) & 5x \ Seq \ Rxn \ Buffer \\ SEQ \ BUF - 2.0(5000) & \\ EDTA - 3.0(200) & 125mM \ EDTA, pH8.0 \\ EDTA - 3.0(5000) & \\ \end{array}$ 

Please contact your local distributor for further details.

## **Support and Contact Details**

Conexio Genomics Pty Ltd 8/31 Pakenham St Fremantle 6160 Western Australia Tel: +61-422-863-227 email: <u>support@conexio-genomics.com</u> Skype: conexiocgx Website: <u>www.conexio-genomics.com</u> Or your local distributor

For ordering details, please refer to the Olerup website (http://www.olerup.com).



## CE

#### Self-certified kits:

| HH-PD3.2-2(20)<br>HH-PD3.2-2(50) | SBT Resolver <sup>™</sup> HLA-C kit (20 and 50 tests)    |
|----------------------------------|----------------------------------------------------------|
| PQ-PD6.2-2(20)<br>PQ-PD6.2-2(50) | SBT Resolver <sup>™</sup> HLA-DQB1 kit (20 and 50 tests) |
| HH-PD10.1(20)<br>HH-PD10.1(50)   | SBT Resolver <sup>™</sup> HLA-DPB1 kit (20 and 50 tests) |

Conexio and HARPS are trademarks of Conexio 4 Pty Ltd. HARPS<sup>®</sup> is a registered trademark in some territories.