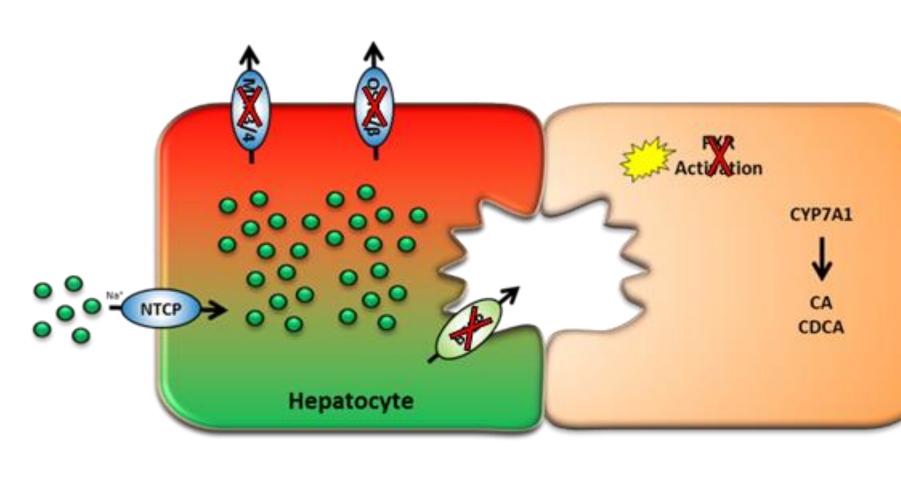
¹Preclinical Safety and ²Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA, ³ADME-Tox Division, BiolVT, Durham, NC

Abstract

Drug-induced liver injury (DILI) is a common reason for late stage drug failure and remains difficult to predict. The C-DILI[™] Assay uses Sandwich-Cultured Transporter Certified[™] Human Hepatocytes (SCHH) cultured under physiological relevant concentrations of bile acids and lipids, allowing for determination of alterations in bile acid disposition and hepatotoxicity. In this study, the hepatotoxicity potential and mechanism (cholestatic versus general) was assessed using the C-DILI[™] Assay for four preclinical candidates (BIO1 through BIO4) found to be hepatotoxic in repeatdose rat studies as indicated by histopathology and/or clinical chemistry changes. All four compounds were inactive in a BSEP inhibition assay at concentrations up to 100 µM (unless limited by solubility). SCHH were exposed to test article under standard conditions or bile acid sensitization conditions to assess hepatotoxicity potential and mechanism using the LDH leakage profile across the media conditions. Concentration-dependent increases of LDH were observed in SCHH treated with BIO1, BIO2, and BIO3 under both media conditions, suggesting that these three test articles have the potential to cause hepatotoxicity through a general toxicity mechanism rather than impairing bile acid homeostasis. In contrast, LDH leakage was 13X greater under sensitization media versus standard conditions following the lowest BIO4 treatment examined, suggesting that BIO4 has the potential to disrupt bile acid homeostasis in hepatocytes leading to bile acid-dependent or cholestatic hepatotoxicity. The C-DILI[™] Assay results for general hepatotoxicity were consistent with rodent findings, however, based on this assay, only BIO4 would have the potential to cause cholestatic hepatotoxicity in humans.

C-DILI[™] Assay Experimental Design/ Methods


- Cryopreserved hepatocytes were thawed and suspended in propriety hepatocyte seeding medium (QualGro[™] Seeding Medium) at a density of 0.8 million viable cells/mL onto BioCoat[®] 96-well cell culture plates.
- Cells were allowed to attach for 2-4 hours, rinsed, and fed with warm seeding medium.
- 18-24 hours later, cells were fed and overlaid with propriety culture medium (QualGroTM) supplemented with Matrigel® (0.25 mg/mL) and maintained in QualGroTM Hepatocyte Culture Medium for 4 days until used in studies.
- Hepatocytes were then treated with QualGro[™] Sensitization or QualGro[™] Standard Human Culture Medium containing solvent control DMSO (0.1%), positive and negative controls CsA, Troglitazone, and Ketoconazole, and test articles BIO1-BIO4.
- Following 24 hours of exposure, culture plates were harvested for ATP (controls only) and LDH analysis. Cellular ATP content was determined using the CellTiter-Glo® Assay Kit [Promega (Madison, WI)]. LDH content of media was determined using the CytoTox-ONE® Assay Kit (Promega).

Predicting drug-induced liver injury in vitro

¹Sarah Lamore, ²Chris Rowbottom, ²Sudarshan Kapadnis, ¹Alison Easter, ¹Eric Tien, ¹Jim Fikes, ³Kenneth Brouwer, and ³Jonathan Jackson

C-DILI[™] Assay Experimental Design/ Methods

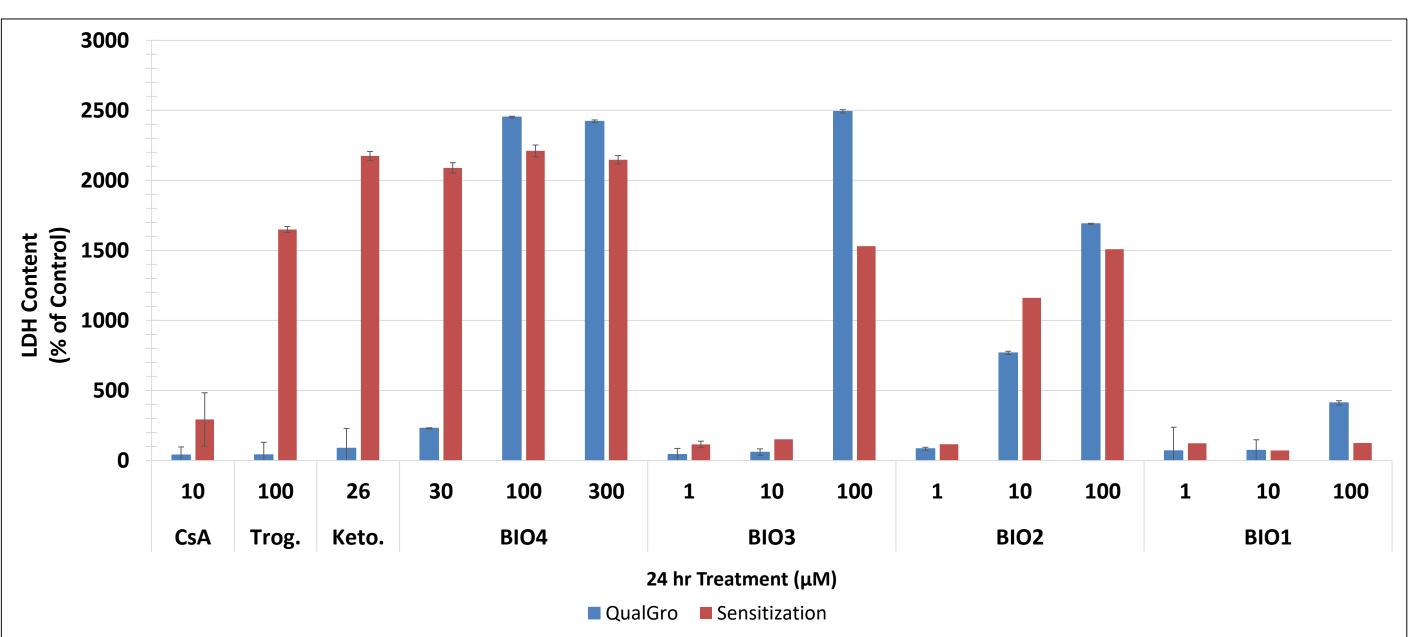

Bile Acid-Induced (e.g. Cholestatic) Hepatotoxicity Figure 1.

Table 1.	LDH Content RangeRisk Level0-150%Low151-199%Medium≥200%High											
	Conc. (µM)	QualGro Standard				QualGro Sensitization						
Compound		ATP Content		LDH Leakage		ATP Content		LDH Leakage		Hepatotoxicity Potential		
		% of Control	Std. Dev.	% of Control	Std. Dev.	% of Control	Std. Dev.	% of Control	Std. Dev.	(Mechanism)		
CsA	10*	117	6.8	73.4	4.5	121	4.3	99.4	7.0	Low Hepatotoxicity		
Troglitazone	100*	97.9	4.5	110	3.2	0.197	0.033	2030	58	High Hepatoxicity (Cholestatic)		
Ketoconazole	12	105	3.2	166	48.0	22.7	3.9	1100	20	High Hepatotoxicity (Cholestatic)		
	30			147	3.0			1910	220	High Hepatoxicity (Cholestatic)		
BIO4	100			5100	500			3480	160	High Hepatotoxicity (General)		
	300			6260	140			3410	120	High Hepatotoxicity (General)		
	1*				0.75			62.1	0.30	Low Hepatotoxicity		
BIO3	10*			4.12	5.8		82.1 25 Lov		Low Hepatotoxicity			
	100*			1690	460			1630	270	High Hepatotoxicity (General)		
	1*			81.6	2.8			77.7	12	Low Hepatotoxicity		
BIO2	10			122	32			120	32	Low Hepatotoxicity		
	100			3280	130			1740	14	High Hepatotoxicity (General)		
	1			84.2	14			61.0	13	Low Hepatotoxicity		
BIO1	10*			71.4	5.2			46.5	6.5	Low Hepatotoxicity		
	100			180.0	30.0			48.7	1.9	Medium Hepatotoxicity (General)		

age N=2 replicates (Grubbs outlier test), all others N=3

Figure 2. LDH leakage following 24 hour exposure to BIO1-4

The C-DILI assay is a comprehensive assay that integrates effects on BSEP, OST, MRP3/4, and FXR using SCHH to assess cholestatic hepatoxicity potential. SCHH repolarize and form networks of bile canaliculi-like structures and reestablish vectorial flow of bile acids while maintaining other mature hepatocyte functions, including nuclea receptor signaling and metabolism. These are necessary biological processes involved in bile acid homeostasis that an appropriate model system must support to prospectively evaluate a new chemical entity's (NCE) cholestatic DILI potential.

Inhibition of BSEP alone is not sufficient to result in cholestatic hepatotoxicity due to the activation of FXR increasing basolateral efflux (OST) of bile acids and preventing hepatotoxicity¹. However, if those same compounds also antagonize FXR and prevent the hepatocyte from reducing intracellular concentrations of bile acids, then those compounds would increase the potential for cholestatic hepatotoxicity¹. NCE that disrupt multiple pathways of the bile acid homeostasis mechanisms have higher cholestatic hepatoxicity potential.

DILI Risk Level

Results

- at concentrations \geq 100 μ M.
- hepatotoxicity in humans.

Table 2. Correlation between rat study liver injury findings and cDILI[™] results

BIO #	study length	summary of liver findings	Plasma Cmax Range (uM)	cDILI assay conc (uM)	cDILI assay results	Hepatoxicity Mode	BSEP Inhibition
BIO1 5 d			1	low	N/A	>100µM	
	vacuolation (glycogen-like) & necrosis (mild – moderate), elevated liver enzymes	4.8 - 36.2	10	low	N/A		
				100	medium	General	
				1	low	N/A	,
BIO2 14 d	necrosis (hep and bile duct)& bile duct hyperplasia (mild), elevated liver enzymes	8.2 - 15.0	10	low	N/A	>10µM (limited by solubility)	
		inver enzymes		100	high	General	
BIO3 28 d			41.5 - 154.2	1	low	N/A	>100µM
	28 d	No liver histopathology findings;		10	low	N/A	
	elevated liver enzymes		100	high	Direct		
BIO4 14 d			100.9 -161.7	30	high	Cholestatic	
	14 d	hypertrophy, reactive sinusoidal linings, vacuolation, necrosis (mild- moderate), elevated liver enzymes		100	high	General	>14µM (limited by solubility)
				300	high	General	

References:

1. Jackson JP et al. Cholestatic DILI: A Function of BSEP Inhibition and FXR Antagonism. Appl In Vitro Tox 2018 4(3): advanced online publication DOI: 10.1089/aivt.2018.0011

Discussion

• The hepatotoxicity mechanism was determined based upon the LDH leakage profile of cells cultured in standard QualGro[™] Human Medium versus bile acid sensitization conditions, QualGro[™] Sensitization Medium (Figure 2 and Table 1).

LDH leakage across both media conditions suggested the following rank order

(highest to lowest) of hepatotoxicity potential: $BIO4 > BIO3 \ge BIO2 >> BIO1$.

 LDH leakage was 13X greater under sensitization media vs. standard conditions following 30 µM BIO4 suggesting that BIO4 has the potential to disrupt the bile acid homeostasis mechanism in hepatocytes at this concentration.

Increases of LDH leakage > $1630\% \pm 270\%$ of control were observed in SCHH treated with \geq 100 µM BIO4, BIO3, or BIO2 under both media conditions,

suggesting that all 3 test articles have the potential to cause general hepatotoxicity

• LDH leakage in SCHH following BIO1 treatment was < 200% of solvent control under both media conditions evaluated suggesting that BIO1 had the least hepatotoxicity potential of the test articles evaluated.

• The C-DILI[™] Assay results were consistent with rodent findings (Table 2), Based on this assay, only BIO4 would have the potential to cause cholestatic

